

THE CYBERSPACE

TIGHTENING THE ACQ

GRADUATE RESEARCH PAPER

Matthew P. Larkowski, Major, USAF

DEPARTMENT OF THE AIR FORCE

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright

APPROVED FOR PUBLIC RELEASE; D

CYBERSPACE DEVELOPMENT DOGFIGHT:

TIGHTENING THE ACQUISITIONS TURN CIRCLE

GRADUATE RESEARCH PAPER

Matthew P. Larkowski, Major, USAF
AFIT/ICW/ENG/09-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AIR FORCE INSTITUTE OF TECHNOLOGY

ISTRIBUTION IS UNLIMITED

The views expressed in this graduate research project are those of the author and do not

reflect the official policy or position of the United States Air Force, Department of

Defense, or the United States Government.

AFIT/ICW/ENG/09-03

The Cyberspace Development Dogfight: Tightening the Acquisitions Turn Circle

GRADUATE RESEARCH PAPER

Presented to the Faculty

Department of Electrical & Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Cyber Warfare`

Matthew P. Larkowski, BS

Major, USAF

June 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AFIT/ICW/ENG/09-03

THE CYBERSPACE

TIGHTENING THE A

Approved:

Robert F. Mills, PhD (Chairman

John M. Colombi, PhD (Member)

CYBERSPACE DEVELOPMENT DOGFIGHT:

TIGHTENING THE ACQUISITIONS TURN CIRCLE

Matthew P. Larkowski, BS

Major, USAF

Chairman) Date

(Member) Date

 iv

AFIT/ICW/ENG/09-03

Abstract

The purpose of this research was to assess the ability for DoD software development

to keep up with the increasing rate of technological change, then propose avenues for

improvement. Specifically, this research attempts to answer fundamental questions based

on the concerns for the 2010 Quadrennial Defense Review. In general, how do we adapt

software acquisitions strategy to cope with the increasing rate of technological change?

The following conclusions were reached: (a) software projects must be scoped

and scheduled for development cycles on the order of months, not years, and use open

architecture, Agile Development methods, and scalable designs with modular code;

(b) budgets must be stabilized for long-term integrity, with a software development

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of

MAJCOM- or AOC-level business centers must be encouraged and funded to produce

tailored software modules that interface with larger agile programs built to accept these

modules; (d) we must take advantage of ATCD and ATD efforts from research

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate

System Program Office, to produce and field operational software (by default, not by

exception); and (e) periodic software development working groups and conferences

should be continued, but with emphasis on standardization and sharing of lessons learned

between services, MAJCOMs, and AOCs.

 v

Acknowledgements

I would like to thank my parents for teaching me how to find the answers to my

own questions; for their encouragement and support while shuffling three children

through the hectic tapestry of numerous school, sports, music, and computer events; and

for not knowing how to program the VCR, thus requiring me to learn how to teach, which

is perhaps my most valuable skill.

I would like to thank my fellow Cyber Warfare classmates of AFIT Class

ICW-09J: for their unique and valuable skills and contributions throughout the last

several months; for tolerating my philosophical rants, for providing a sounding board for

my off-the-wall ideas, and for their great friendship and family; and for motivating and

challenging me with obscure computer questions, recipe requests, and grammar

semantics issues (not including this page).

I would like to thank my numerous mentors and commanders throughout my

career, my professors here at AFIT, and the United States Air Force, for giving me this

opportunity to take valuable time away from the operational Air Force so I could learn

without distraction, for providing an outstanding educational atmosphere with unique

military characteristics I could not get elsewhere, and for encouraging me to contribute

my skills and military experience toward a subject area about which I am very passionate.

 Matthew P. Larkowski

 vi

Table of Contents

 Page

Abstract .. iv

Acknowledgements ..v

Table of Contents ... vi

List of Figures .. viii

List of Tables ... ix

I. Introduction ..1

Background .. 1

Motivation ... 2

Purpose .. 3

Scope ... 4

Results ... 4

Thesis Organization ... 5

II. Paralysis by Analysis: Getting to know thyself ..6

A Typical Technology Purchase for an Average Consumer ... 6

History of Acquisition Reform and Software Development ... 7

The Good .. 8

The Bad .. 8

JCIDS to the rescue .. 10

Paralysis in the current DoD JCIDS Process: .. 11

Is our acquisition process fast enough for IT acquisition and software development? . 15

III. So what do we do about it? ...19

How do we change our acquisition strategy to keep pace with our peers? 19

Decrease scope and increase frequency of software development projects 19

Consider event-based strategy, technical maturity, and flexible budgets 20

Develop a separate cyber acquisition category .. 21

What are technology-centric organizations doing to remain relevant? How do they
remain agile and responsive, while minimizing risk? ... 25

Best Vantage, Inc., and the OODA loop .. 25

Google, Inc., on ‘Beta’ software and Agile Practices .. 28

 vii

How Google estimates complexity instead of duration or budget 36

Does Google’s agile programming method scale well to large projects? 37

DISA on improving software development using agile methods 38

Software Development ... 38

Software Testing .. 39

Improving on JITC certification ... 40

Determine how to integrate with existing JCIDS process ... 41

Balancing between JCIDS and Agile: Learning from the JPADS ATCD success 42

A better way to integrate advanced technology: The WIDE/GRS ATD Struggle 44

Increase the use of MAJCOM and AOC ‘business centers’ 49

IV. Conclusions and Future Research ...54

Findings ... 54

Future Research ... 55

Develop Separate DoD 5000 Instructions for Information Technology 55

Reassess required Key-Performance Parameters (KPP) for IT 56

Determine acquisition categories based on risk and complexity, not cost estimates . 57

Appendix A: Fundamental Concepts ..60

Moore’s Law ... 60

Rock’s Law .. 62

Joint Capabilities Integration & Development System (JCIDS) 63

Colonel John R. Boyd .. 66

Law of Competing Motives ... 68

Bibliography ..70

Vita ...72

 viii

List of Figures

 Page

Figure 1 - The Program Management Pendulum Swing [11] ... 16

Figure 2 - Acquisition Categories and Milestone Decision Authority [14] 22

Figure 3 - DODI 5000.2 ACAT I-III Programs Detail ... 24

Figure 4 - Best Vantage Inc., Strategic Food Marketing and OODA Loops 25

Figure 5 - Google software development 'Agile 101' [19] .. 31

Figure 6 - ‘Stories’ are requirements the customer and developer understand 33

Figure 7 - JPADS enables standoff precision airdrop using guided parachutes[26] 43

Figure 8 - Legacy Software Tool showing hard-to-read text displays [27] 45

Figure 9 - WIDE/GRS ATD showing the Multi-Mission Timeline View........................ 46

Figure 10 – WIDE/GRS ATD showing interactive timeline [28] 47

Figure 11 - WIDE ATD reduced time and error by more than half [28] 48

Figure 12 - Crate Warehouse from the movie "Raiders of the Lost Ark" 49

Figure 13 - Software Development Turn Circles .. 51

Figure 14 - The Software Development Dogfight .. 55

Figure 15 - Moore’s Law Original Graph ... 60

Figure 16 - Moore's Law Linear Relationship [32] .. 61

Figure 17 - JCIDS & Defense Acquisition System Integrated Framework Chart [5] 64

Figure 18 - DoD Architecture, Requirements & Acquisition Process [34] 65

Figure 19 – JCIDS and the Defense Acquisition System [34].. 65

Figure 20 - The One and Only OODA Loop [34] .. 67

Figure 21 - Law of Competing Motives, Example Color Wheel 69

 ix

List of Tables

 Page

Table 1 - Acquisition Reform Initiatives [2]... 7

Table 2 - Redesigned Acquisition Categories for Information Technology 23

Table 3 - Important Questions Gleaned From Best Vantage Inc. 28

Table 4 - The Google point system for estimating complexity [19] 36

 1

THE CYBERSPACE DEVELOPMENT DOGFIGHT: TIGHTENING THE

ACQUISITIONS TURN CIRCLE

I. Introduction

“DoD has been able to develop and acquire the best weapons and support

systems in the world. DoD and contractor personnel accomplished this

feat not because of the system, but in spite of it. And they did so at a

price… the nation can no longer afford to pay.”

 — Former Secretary of Defense William J. Perry

Background

Moore’s Law describes the miniaturization trend for doubling the density of

microchip transistor components approximately every 24 months. This basic tenet of

Moore’s Law is often generalized to describe the increasing pace of technology change.

Technology has, is, and will continue to double on the order of months, not years. In

contrast, Rock’s Law is often conversely associated with Moore’s Law in that the cost of

producing the future’s increased density and technology also increases exponentially.

Thus the ages-old balancing act between resources and capability is set in motion. See

Appendix A: Fundamental Concepts, for further discussion on these areas.

Given limited resources and a finite economy, equilibrium is reached at some

point and Rock’s Law dominates the otherwise exponential growth of Moore’s Law. I

believe, however, that we are more limited by how we are using our resources, not just

the amount of our resources. We are also limited by a dwindling understanding of how

our people fit into the process; after all, a process doesn’t run itself! Regardless, the rate

of technology change is only getting faster and resources aren’t getting more generous…

yet our mechanism for spending money, allocating resources, and adapting to changing

technology requirements is either unchanged or taking even longer to complete for each

 2

development cycle. The development cycle can be described using the Observe, Orient,

Decide, Act (OODA) model. Colonel John R. Boyd, considered to be the father of the

‘OODA loop’ for process analysis, would be the first to say that we should not

simplistically limit our focus only to the ‘OODA’ parts of the process. “People, ideas,

hardware — in that order”, he would often preach, and “machines don’t fight wars,

people do, and they use their minds”, were commonly heard from Colonel Boyd [1].

As the relative length of time required to complete any project increases, we must

attempt to predict future capability requirements earlier and earlier. Thus, the precision

and accuracy of these requirements fall off rapidly the more we try to peer into the crystal

ball and see the future. I sense that the theoretical value and efficiency attained by our

current acquisitions process is often a false one when all the costs are all tallied. These

costs are due to the lack of timely technological adaptations, increasingly unstable

process transitions, and outright regression in providing timely, unique high-priority

capabilities required by operators while instead preserving the lower priority integrated

and over-centralized capabilities desired by managers. It is important to note that this is

not necessarily the fault of the acquisition process itself. The process fulfills valid and

important ambitions; nonetheless its current manifestation is inadequate and incomplete

for addressing particularly urgent or unique capability requirements.

Motivation

This research supports the Quadrennial Defense Review (QDR) request for an

acquisition strategy in an accelerating world. Based on the QDR 2010 topics, I posed the

following questions: How do we change our acquisition strategy to keep pace with our

 3

peers? How do we bridge the gap between specific mission-focused systems, whose

requirements are well-defined and scoped, and large-scale enterprise systems, which tend

to be one-size fits all, yet often don’t scale well? What are technology-centric

organizations in the business sector doing to remain relevant? How do they remain agile

and responsive, while minimizing risk?

Purpose

The purpose of this research project is to evaluate our current acquisition

capabilities for software development then present methods for mitigating challenges and

improving our strategy. To do this, this study will look at the history of acquisition

reform in the broad sense, before focusing on software development process

improvements. It is my feeling that software development is the metaphorical ‘canary in

the coal mine’ in terms of highlighting acquisitions process breakdowns; software

development can often be the first to suffer from any weaknesses or mismanagement.

This study will look at changes we can make to improve software development,

researching pros and cons of a smaller, faster acquisitions cycle by using medium-sized

business centers, as opposed to only using large enterprise architecture development

efforts. Better methods for transition and integration of Advanced Concept Technology

Demonstrations (ACTD), Joint ACTDs (JACTD), and Advanced Technology

Demonstrations (ATD) into the Joint Capabilities Integration & Development System

(JCIDS) process will also be explored.

 4

Scope

This study is limited to a review of existing software development strategies,

including an overview of relevant theories as needed, and an exploration of new

approaches for improving software development speed and quality. I am writing this

with both operations and acquisitions readers in mind, so I’ve made the attempt to

minimize the use of acronyms or jargon, while introducing a modicum of key terms

everyone should know. An in-depth examination of the various strategies, engineering

studies, and cost-benefit analyses are also beyond the scope of this study.

Results

The following conclusions were reached: (a) software projects must be scoped

and scheduled for development cycles on the order of months, not years, and use open

architecture, Agile Development methods, and scalable designs with modular code;

(b) budgets must be stabilized for long-term integrity, with a software development

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of

MAJCOM- or AOC-level business centers must be encouraged and funded to produce

tailored software modules that interface with larger agile programs built to accept these

modules; (d) we must take advantage of ATCD and ATD efforts from research

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate

System Program Office, to produce and field operational software (by default, not by

exception); and (e) periodic software development working groups and conferences

 5

should be continued, but with emphasis on standardization and sharing of lessons learned

between services, MAJCOMs, and AOCs.

Thesis Organization

This chapter presents the motivation, purpose, scope and results for this research,

and concludes with the document’s organization. Chapter II explores the history of

acquisition reform, including lessons learned from selected acquisition projects and

existing studies. Chapter III aggregates and discusses methods for improved software

development — including pros and cons of each concept. Chapter IV presents the

conclusions and ideas for future research.

 6

II. Paralysis by Analysis: Getting to know thyself

”If you know the enemy and know yourself, you need not fear the result of

a hundred battles. If you know yourself but not the enemy, for every

victory gained you will also suffer a defeat. If you know neither the enemy

nor yourself, you will succumb in every battle.”

—Sun Tzu

A Typical Technology Purchase for an Average Consumer

Nearly everyone reading this is probably familiar with the basic challenges of

software acquisition. Even the most tepid computer user has likely experienced the

dreaded software upgrade, purchased a software program that did not do what we wanted,

or used software that was unreliable and untrustworthy. I submit that software

development and acquisition within the DoD is not altogether different from the typical

experience of the average person, only the scope and scale of the software is much larger.

We have probably purchased a technology item, such as software, a computer,

television, or stereo. In doing this, we’ve gone through the classic struggle of trying to

decide which features were needed compared to which features were merely wanted. We

considered whether or not to buy the economy model with fewer features and perhaps

lesser quality, or maybe decided to go for the top of the line, hoping the technology

features and quality will mean it will last several years. Once our choice was made,

we’ve perhaps been disappointed when we discovered that a newer model is already

under development, and the model purchased will no longer be the leading edge of the

technology wave. If we were already aware of this and made a conscious decision as to

which ‘wave’ to try for — the sharp, ‘bleeding’ edge, expensive first wave, the economy

of last year’s wave, or the ‘bargain basement’ wave of technology at risk of becoming

 7

obsolete. Ultimately, we must make a decision sometime, or the waves of technology

pass will us by. This experience is paralysis by analysis.

History of Acquisition Reform and Software Development

“What would you do if you were stuck in one place and every day was

exactly the same, and nothing that you did mattered?”

 —character Phil Connors from the film “Groundhog Day”

 The DoD also experiences a similar paralysis and the United States has made

many efforts to improve defense acquisitions such that we prevent the waste of valuable

resources, while providing timely and superior equipment to our fighting forces. Table 1

shows a brief history of recent US acquisition reform efforts, prior to the current JCIDS

process. It is important to understand that there have been many reform efforts, by many

intelligent people, and these reforms have made positive changes, but there’s still room

for improvements, in order to speed up software acquisitions:

Table 1 - Acquisition Reform Initiatives [2]

1961 McNamara Initiative

1970 Fitzhugh Commission

1972 Commission on Government Procurement

1976 OMB Circular 4-109

1978 Defense Science Board Acquisition Cycle Study

1979 Defense Resources Management Study

1981 Defense Acquisition Improvement Program

1983 Grace Commission

1986 Packard Commission

1986 Goldwater Nichols

1989 Defense Management Review

1990 Quadrennial Defense Reviews

 8

The Good

In one of many Rand Corporation studies of DoD Acquisition Reform (AR)

efforts, Dr. Ken Oscar, Acting Assistant Secretary of the Army for Acquisition, Logistics,

and Technology, described the positive aspect of AR that laid the foundation for JCIDS

in an article titled “Reexamining Military Acquisition Reform: Are We There Yet?”:

Overall, Oscar characterized the AR movement in the 1990s as having

been energized by Secretary Perry’s “Mandate for Change” speech in

1994, and as having achieved three very important legislative

accomplishments over the period: the Defense Acquisition Workforce

Improvement Act (DAWIA) of 1990, the Federal Acquisition Streamlining

Act of 1994, and the Federal Acquisition Reform Act (FARA) of 1996. In

his view, those legislative actions (along with the AR efforts to internally

reform the acquisition process — e.g., the rewrite of the 5000 Series2)

have helped to improve the education and skills of the acquisition

workforce, remove unnecessary laws, and reduce regulations — thereby

contributing to an environment that allows for more creative approaches

to acquisition than were previously possible.[3]

The reforms of the 1990’s reduced the “stovepipe” effect where organizations tended to

limit communication vertically up and down the chain of command. Lateral

collaboration did not happen naturally. Dr. Oscar also highlighted the birth of

“evolutionary acquisition”, which divided large systems into smaller chunks —

increasing delivery flexibility and decreasing scheduling risk [3].

The Bad

 While these reforms reduced confusion and “red tape”, paving the way for

Program Managers (PM) to have more creative control over the acquisition process, there

was still more to be done. “AR gives PMs authority to take risks but not the resources…”

and “We reformed the acquisition process but not the financial process that supports it...”

were among the complaints fielded from PMs. More so, I’ve often felt that many of the

 9

changes were more “lip service” than anything else. The RAND study’s findings echoed

these sentiments:

Several of the participants provided frank assessments of the changes —

or lack thereof — brought about under AR. A senior deputy PEO

commented that “AR has been good at cranking out policies, but hasn’t

made anything faster, better, or cheaper,” a remark with which many

others participating in the group interview concurred. One participant

noted, “There is no such thing as acquisition reform. We’ve changed the

way PMs deal with contractors, but nothing else has changed.” [3]

In another key finding, there was a general observation that not all organizations

were playing along with AR efforts. It was widely felt that external organization

resistance can still dominate AR:

AR will remain suboptimized until they reform the financial, logistics, test,

engineering, contracting, and legal communities. These communities can

unilaterally kill any AR program, since they have full veto authority in

most cases, while not being held accountable for their decisions. [3]

In criticism of the testing portions of AR, several PMs felt this same refusal to change:

The testing community is still in the old ways of doing business . . . The

test community is still living 30 years in the past. . . . The test community is

still focused on their reporting requirements rather than testing to fix. [3]

These observations all seem to involve the concepts of authority, responsibility,

and accountability. In my opinion, these three things must be distributed with equal

measure within an organization. Whenever one organization is responsible for

performing tasks, but is not authorized to control its resources, there is a breakdown in

the overall system of accountability. Quite often this lack of authority is felt in terms of

funding control: “Many PMs felt constrained due to ‘color-of-money’ restrictions on

how they could spend the moneys within their budgets.” [3] It seems that it is not just the

lack of money or resources, but often the control over the same that is inadequate.

 10

JCIDS to the rescue

Acquisition reforms have led to the current JCIDS process, and we’ve evolved

JCIDS as a capabilities-based method for deciding what to buy and what features we

need and want — feeding the overall acquisitions process. Quite literally, the needs are

called threshold requirements and the wants are called objective requirements.

Previous to JCIDS, acquisition was often service focused and platform-centric [4].

For example, the Army might be inclined to build a newer tank, improving upon the

current design. This might have been done without considering whether or not a new

tank was really needed. Indeed, the capabilities of another service may have already

better addressed the threat for which the new tank would be designed, or a simple change

doctrine could mitigate the issues at hand without requiring a new tank. Will the new

tank fit onto our cargo planes or ships? Either way, precious resources would be wasted

on a new tank that is not needed, won’t work with our other equipment, or duplicates a

capability that already exists.

In general, JCIDS seeks to preserve resources with a process that begins with the

identification of desired capabilities and an organization’s current ability to address that

capability (known as a gap analysis). Once a gap in capability is identified, JCIDS seeks

to determine whether or not we need to make something to fix it — a materiel solution.

Otherwise, a non-materiel solution, such as new training or processes, may fill the gap.

These new requirements are mixed with existing requirements, and then refined,

prioritized, and reviewed by the Joint Requirements Oversight Council (JROC).

JCIDS continues with concept refinement. Next, it proceeds to a Functional

Solutions Analysis (FSA), which determines whether or not a material solution is

 11

required vs. a non-material or training solution. Ultimately an Analysis of Alternatives

(AOA) is done for choosing a specific material solution to procure. The process of

building a new technology proceeds through three milestones (A, B, and C), where key

documents are produced and reviewed as to the technology is designed, prototypes are

built and tested, and finally the technology is fielded under full-rate production. The

entire life-cycle of the technology is considered, from initial operational capability to the

eventual retirement of the technology.

Other processes operate along with JCIDS, such as the Planning, Programming,

Budgeting, and Execution (PPBE) process for continually reassessing the DoD’s resource

allocation. Any new JCIDS program must be prioritized within the PPBE for

consideration. Software must also seek Joint Interoperability Test Center (JITC)

certification in order to verify that it meets the Net-Ready Key Performance Parameters

(NR-KPP), that qualify the software for full-rate production. This is the last of several

certifications before the J-6 issues the Interoperability System Validation letter that

allows the software to be used operationally [5]. For more information on the JCIDS

process, see Appendix A: Fundamental Concepts.

Paralysis in the current DoD JCIDS Process:

“You will never understand bureaucracies until you understand that for

bureaucrats procedure is everything and outcomes are nothing.”

—Thomas Sowell, The Hoover Institution

The paralysis within DoD acquisitions manifests itself in a slightly different way

than it does for the typical consumer purchase, described earlier, but the analogy holds

true. To understand this, we must look at what happens in the JCIDS efforts that begin

 12

the acquisition process. In JCIDS, once a capability gap is identified, and possible

solutions developed, an analysis is done to determine how “joint” the new proposal is and

how much oversight it deserves. JCIDS is designed to save resources, avoid duplication,

and ensure analyses consider all services jointly; in JCIDS everything is “born joint.” A

new proposal may have impacts that affect all the services, and is categorized as “Joint

Integration”, or the proposal may only affect a single service, and is categorized as

“Independent”. Furthermore, the JROC has oversight for and reviews all large

acquisition category (ACAT) programs, including any other programs for which they

have an interest [4].

This categorization and oversight is all well and good, except that it may have

drastic impacts on the size and scope of the subsequent acquisition effort. For large

programs, it ensures risk is minimized, resources are efficiently spent, and ‘no stone is

left unturned’. For urgent war-fighter needs, however, JCIDS would add excess burden

and discourage experimentation. Thus the Joint Urgent Operational Needs (JUONs)

process was developed in July 2005, to provide a mechanism for rapidly validating and

resourcing these needs [6].

JUONs, according to CJCSI 3170.01G, 1 March 2009, defines urgent operational

needs as those that:

(1) fall outside of the established Service processes; and (2) most

importantly, if not addressed immediately, will seriously endanger

personnel or pose a major threat to ongoing operations. They should not

involve the development of a new technology or capability; however, the

acceleration of a Joint Capability Technology Demonstration or minor

modification of an existing system to adapt to a new or similar mission….

 13

These needs, according to the older 15 July 2005 version of CJCSI 3470.01, “… can be

considered as life- or combat-mission-threatening needs, based on unforeseen military

requirements that must be resolved in days, weeks or months.” [7]. Although not always

‘life or death’, JUONs is a useful non-JCIDS method which could benefit IT acquisitions.

The inclusion of ACTDs within JUONs also provides an avenue for fast IT development.

The “born joint” aspect of JCIDS, JUONs, and JACTDS shifts the focus toward

resource efficiency rather than time-to-field efficiency or mission-effectiveness

efficiency, although the JUONs process attempts to mitigate this. This is doing exactly

what ‘Joint-ness’ was designed to do, but perhaps we need to reconsider the ramifications

of this new focus. A simple, urgently needed IT software tool may initially be paralyzed

by JCIDS joint analysis and, unless it qualifies as a JUON, the joint analysis time can be

excessive. Furthermore, assuming a joint service need for development of a new tool, all

services must coordinate together as they march through the acquisition process steps.

Joint interoperability is significantly improved through joint integration efforts,

but at a cost. In this synchronized fashion, integration ensures that no one is left out of

the loop and that all requirements are considered, but the drawback of integration is that

we now must run at the speed of the slowest runner. We cannot move through successive

OODA-loop cycles until all interdependent pieces are ready. One service may have a

unique requirement for a tool capability that another service does not have, yet all

services must wait until the analysis, design, and testing for that requirement are

integrated into the whole process.

In 2005, Vice Chairman of the Joint Chiefs of Staff, Admiral Edmund

Giambastiani gave written testimony on JCIDS to the House Armed Services committee.

 14

Vice Admiral Evan Chanik, chief of the Joint Staff J-8, Force Structure Directorate,

commented on Admiral Giambastiani’s testimony, suggesting future improvements to

JCIDS, according to this excerpt from this February, 2006, Inside the Air Force report,

“Joint Staff officials will 'tweak' JCIDS to better address urgent needs” [8]:

…Chanik’s comments come several months after [Giambastiani], in

written response to advance questions from the Senate Armed Services

Committee during his confirmation process last summer, first raised the

issue of tweaking JCIDS to address urgent requirements. In his responses,

Giambastiani noted that the JCIDS process “is designed to impact mid- to

far-term capabilities and funding (three years and beyond)” but has “less

flexibility to quickly respond to emerging requirements...in the near-term

budget years (one to two years).”

Ultimately, limited acquisition authority and other ad hoc measures

Congress has enacted to address the problem should give way to more

permanent solutions, Giambastiani wrote. “In the long term, the JCIDS

process needs to change to fall more in line with the demands and pace of

today’s operations,” Giambastiani noted.

Further criticisms of JCIDS, by current and former military officials, were published in

Inside the Navy, and reproduced in the same Inside the Air Force article. Retired Marine

Corps Lt. Gen. Paul Van Riper, in an email to Chairman of the Joint of Staff General

Peter Pace, and other senior leadership, “… slammed JCIDS for being “overly

bureaucratic and procedurally focused.” Van Riper continued:

“My greatest concern is that as these concepts migrate into the curricula

of professional military schools they will undermine a coherent body of

doctrine creating confusion within the officer corps,” Van Riper

continued. “In fact, I have begun to see signs of just that!” In a response

sent several days following Van Riper’s e-mail, [USMC LtGen James]

Mattis -- who is now in the post Van Riper held when he retired in 1977 --

agreed wholeheartedly. [8]

Many of these criticisms have been taken to heart and on 1 May, 2007, CJCSI 3170.01F

was released in order to continue to “…refine the JCIDS process and the information they

 15

require to ensure they are making effective, appropriate decisions in a timely manner.

This update to the policies and processes continues that evolution of JCIDS to ensure our

ability to continue to meet the needs of the joint warfighter.” As of this writing,

CJCSI3170.01G, 1 March 2009, is the current JCIDS policy release.

Is our acquisition process fast enough for IT acquisition and software development?

“The global situation is so unpredictable that the Acquisition system must

be flexible and agile.”

— Colleen A. Preston, Deputy Under Secretary of Defense for

Acquisition Reform [9]

Since the acquisition criticisms of 2005 through 2007 were voiced by high-level

military leaders, it still needs more ‘tweaks’. In a DefenseNews online article titled “DoD

IT Procurement Too Slow: Cartwright”, published 4 Mar 2009, Joint Chiefs Vice

Chairman General James Cartwright’s comments at the eighth annual Naval IT Day

conference were recorded. The article describes the state of IT procurement as follows:

The current method of procurement for information technology is so slow

that by the time software systems and the like are purchased, they're out of

date, Joint Chiefs Vice Chairman Gen. James Cartwright said March 4 at

a conference for the IT industry.

"It takes longer to declare a new [program] start than the lifecycle of the

software package," Cartwright told an audience of IT industry and Armed

Services representatives…[10]

 With the advent of JCIDS, the AR pendulum has swung such that we are now

excessively risk averse, with the tendency to not accept failure as a necessary part of

development. General Cartwright highlighted this concept, as the article continues:

Aiming for a "perfect" IT solution is often the problem, Cartwright said.

"We have this mindset that somehow whatever we field has to be perfect,

so we'll spend a life of an application's utility testing it to make sure it's

invulnerable and makes no mistakes," Cartwright said. "Looking for the

 16

perfect solution is almost always a recipe for irrelevance, and we've

proved that over and over and over again." [10]

The challenge facing the Defense Department with IT procurement isn't

that technology is too advanced, it's that the culture for procurement isn't

working and needs to change, Cartwright said. [10]

This pendulum swing effect is shown in Figure 1, in a graph excerpt from a slide

presentation by Colonel Pete Rustan, of the National Reconnaissance Office. Note that

as of 2005, DoD is in a state of risk aversion which drives higher costs. Whereas in 1957

the state of total risk acceptance, although cheaper, was also undesirable in that there was

a higher ‘potential energy’ for failure. Furthermore, I submit that the fact that our

process is swinging and unstable at all is a major factor. We must seek stable

equilibrium, balancing between cost and risk. This equilibrium is likely different for

large acquisitions, such as an aircraft carrier, than for smaller IT software development

projects — our system must accommodate the range between these extremes.

Figure 1 - The Program Management Pendulum Swing [11]

 17

 General Cartwright then described that the JCIDS procurement method may be

acceptable for building an aircraft carrier, but for IT procurement, the software we

develop is "…irrelevant before they even get to milestone A” [10]. Cartwright suggests

that although we should proceed with IT procurement improvement, the “DoD may not

buy the most advanced solutions – on a large scale – that industry has to sell” [10]. In

other words, like the typical consumer purchase example, we do not need to be on the

leading edge for IT procurement. I personally disagree with this in part, since IT security

risks are continually discovered and exploited by hackers. If we purposely decide not to

stay ahead of this exploitation wave, we leave our software systems exposed to

infiltration and manipulation. I concede that many ‘wants’ are truly not ‘needs’, but

security is usually in the ‘needs’ category. Mr. Terry Halvorsen, deputy commander for

Naval Network Warfare Command, confirms this in the same DefenseNews article:

… we're not always going to use all of the most leading edge technology in

large areas. We may use it to build a specific mission or to meet a specific

requirement in small ways and then … we'll adapt it. Those of you on that

leading edge need to sometimes step back a little and think about the

tactical, operational problems that we have, particularly with that balance

between security and getting missions [done][10].

With these changes in mind, I view the lack of AR as analogous to monetary

inflation. Holding onto $1000 cash for years and years, the cash will lose value relative

to the economy, due to inflation; by doing nothing we lose money. Similarly, the pace of

change has the same effect if our procurement process is static. If we do not continually

invest in and evolve our procurement process through AR, in time we will be unable to

keep up. In deference to the earlier criticisms that the financial communities have not

mirrored the AR movement, since 1986 we’ve had a two-year Program Objective

 18

Memorandum (POM) process for budgeting DoD requests from the federal budget.

Although changes can be made annually, this financial process is often the ‘long pole’ in

the software development tent, introducing a large amount of lag into the system. Due to

future ‘technology inflation’, this 2-year POM cycle will become relatively shorter and

shorter, in effect. Again, by doing nothing, we lose money.

Robert Carey, the Navy's chief information officer, commented on the acquisition

system challenges for IT, and the inflexibility of our budgeting system:

Things are moving really fast. The acquisition system, and more

importantly the budgeting system, move at a different pace. Today, if most

of you come in and say, 'I've got this great idea. I want to give it to you,'

all of our money has been displaced. There is little agility in that system.

When you go spend it on something else, an opportunity, you generally

have to break something else. That being said, we have the opportunity

within the (Federal Acquisition Regulation) [and other areas to adopt new

technology]. There's a lot of agility that affords us. We need to look at …

how do we move faster while maintaining the right levels of control on the

system.[10]

 Finally, and most recently, Defense Secretary Robert Gates identified AR as an

emphasis area for the 2009 QDR. The DoD Buzz online Defense and Acquisition journal

describes Secretary Gates’ desires for better acquisition business processes as follows:

Gates has repeatedly called for acquisition reform to get control over

costs and the need to make “tough choices” on weapons and spending.

“We must ensure that requirements are reasonable and technology is

adequately mature” before programs go forward, he said. His moves to

add acquisition personnel and reduce the role of contractors in

procurement is likely just a first step. He wants to reform the acquisition

system so it can speed weapons to the battlefield and lessen the need for

ad-hoc procurement arrangements, such as JIEDDO, that were created to

try and avoid the often Byzantine weapons buying process. On Gates’

comments on the need for acquisition reform, CSIS’ Anthony Cordesman

had this to say: “The secretary advanced some key issues and priorities

for reform. Unfortunately, exactly the same comments could have been

made during the Eisenhower administration – and were.”[12]

 19

III. So what do we do about it?

How do we change our acquisition strategy to keep pace with our peers?

“Be quick but don’t hurry.”

—John Wooden

Decrease scope and increase frequency of software development projects

In short, we need a tighter OODA loop for cyberspace IT software development.

We must accept the risk of what appears to be resource inefficiency and increased cost

for the sake of development speed and increased experimentation. I believe that the

short-term excess cost will be outweighed by the long-term savings obtained by

completing software development projects that better meet user requirements, in a more

timely fashion.

Increasing the frequency and decreasing the scope for each spiral or increment

will give software developers a smaller and more recent set of requirements to work with.

What is often termed ‘requirements creep’ is actually, in many cases, the nature of

technology change. Unfortunately, we are usually not able to obtain the adversary’s

schedule in advance; therefore, we must concede that much of our strategy should allow

for agile, flexible reaction to hostile action. If our adversary’s software technology

changes weekly, but our software development can only respond years later, we will

likely lose the software battle — this reality should not be considered ‘requirements

creep’. Taking smaller bites, together with flexible budget authority for the PM

(emphasis on authority), will help ensure that we have a better response to all the bumps

in the software road. Perhaps we can even evolve to a continuous integration and

 20

development strategy for software builds, using the patching concept between major

releases.

Consider event-based strategy, technical maturity, and flexible budgets

The current acquisitions process still depends highly upon accurate estimates for

costs and depends upon highly refined requirements. These estimates are refined too

slowly in the JCIDS process to work well for a fast-paced IT project. Failing to meet

these imprecise, inaccurate, and optimistic estimates may doom a program to failure.

Thomas Christie, former DoD Director of Operation Test and Evaluation (OT&E), in his

Military.com forum article titled “Questioning Acquisition Reform”, states that

“undertaking major developments without understanding key technical issues is the root

cause of major cost and schedule problems.”

One solution for this estimation dilemma has been to only allow the use of mature

technology, as assessed using the Technology Readiness Level measurement system.

Often, though, we cannot wait for this maturity to happen as we compete with an

unconstrained adversary. Indeed, without a program budget to start things off, some

concepts and technologies may never get the incentive or ability to be matured. Christie

further highlighted this need for technical maturity:

Of critical importance is demonstrating the technical maturity of the

technologies embedded in a new system development prior to proceeding

into accelerated development. Sufficient up-front funding and time for

effective system and sub-system prototype demonstration and testing

should be programmed to ensure an informed decision concerning the

technical risk entailed in proceeding.[13]

 Christie concludes that rigid time-based scheduling strategies create pressures to

shortcut the proper steps and, in one case, “drove decisions to severely reduce

 21

development testing to save dollars and stay on schedule.” Dollars, time, and risk often

compete in a sort of ‘Law of Competing Motives’ fashion (see Appendix A:

Fundamental Concepts). To alleviate this shortcutting pressure, Christie proposes using

an event-based strategy instead of a schedule-based strategy:

The decision authority should impose an event-based (as opposed to a

schedule-based) strategy on the program to include meaningful and

realistic "exit criteria" for each stage of development and production.

Only if these criteria are demonstrated and satisfied should the program

proceed to its next stage. [13]

Mr. Christie also underscored his sentiments that the initial vector of a program is most

important. Root causes such as this, not excessive oversight, lead to problems:

Most knowledgeable observers of and participants in this process have

already identified most problems and proposed solutions for them.

Pointing fingers at oversight agencies in the executive and legislative

branches for the lengthy times from program starts to deliveries to the

troops in the field does not address the root causes for those schedule

slips. Neither does the cyclical invention of acquisition strategies with

catchy buzzword titles come to grips with those root causes…

…more informed management attention and discipline at the front end of

the process should go a long way toward solving many of the problems

plaguing defense acquisition. Nothing is new here. Time and again, major

defense management reviews have reached the same conclusions. It is

high time that decision-makers take seriously these findings, most of which

are embedded in existing directives and instructions that govern the

acquisition process, and make them an integral part of their program-

review and decision process. [13]

Develop a separate cyber acquisition category

“Nothing is so unequal as the equal treatment of unequals”.

 —P. Larkowski, father of the author, adapted from a popular quote

from George Orwell’s book “Animal Farm”

After observing the pendulum swing effect described by Pete Rustan, I came to

the conclusion that what is an ‘optimal’ cost-risk balance for a large acquisition program

 22

may be different than what is ‘optimal’ for smaller, more agile, IT software development

projects. I thought of the following slide, Figure 2, from the March 2007 Air Force

Acquisition Action Officer 101 briefing:

Figure 2 - Acquisition Categories and Milestone Decision Authority [14]

What I noticed in the slide is that the Space Programs, due to the unique aspects

of the space environment, are treated differently from all other acquisition efforts.

Currently, non-space IT software development falls under ACAT I or ACAT III. There

is no ACAT II for IT system software and Major Defense Acquisition Programs (MDAP)

do not solely include IT. Thus only Major Automated Information Systems (MAIS),

 23

Non-major ACAT III systems, and “Technology and other projects” categories include IT

software development programs.

 I propose that we simplify this by adding a new column for ‘pure IT’ programs,

(see Table 2). Note 3, of the DoDI 5000.2, from December 8, 2008, helps discern what is

or is not ‘pure IT’, (see Figure 3). In general, Automated Information Systems are

primarily IT, where the software itself is a service or capability, rather than an indirect or

supporting entity. Supporting software should develop according to its parent program.

Table 2 - Redesigned Acquisition Categories for Information Technology

 Information

Technology

Programs

Non-Space

Programs
Space Programs

Classification Sub-Designation MDA MDA MDA

MDAP

ACAT 1(D) (1AM) ASD/DoD CIO USD(AT&L)

USecAF and SecAF
ACAT 1(C)

(1AC) SAF/AQ and

SecAF
SAF/AQ and SecAF

Major System ACAT II TBD SAF/AQ or AFPEO AFPEO/SP

Non-Major

System
ACAT III AFPEO or DAFPEO AFPEO or DAFPEO

AFPEO/SP or

DAFPEO/SP

Technology

and other

projects

ATD/ACTD,

Joint War-fighting

Experiments,

Concept Refinements

Varies with category Varies with category Varies with Category

Relative Cycle Short-term Medium-Term Long-term

Note: MAIS is removed and incorporated within MDAP. Also, it is possible that we

should rename “A”, “B”, “C”, or “D” suffixes for ACAT I programs.

In short, we must not treat software development like an aircraft carrier — which is what

MAIS/MDAP programs tend to do. Separating IT in this way makes it easier to assess

the cost-risk pendulum balance differently for the short-term natured ‘pure IT’ projects.

Furthermore, software development that is integral to non-IT programs should not fall

under this new IT column. Also note that acquisition categories are largely cost-based

and perhaps we should change this focus, (see the Future Research section).

 24

Figure 3 - DODI 5000.2 ACAT I-III Programs Detail

 25

What are technology-centric organizations doing to remain relevant? How do they

remain agile and responsive, while minimizing risk?

"A good hockey player plays where the puck is, a great hockey player

plays where the puck is going to be.”

 —Wayne Gretzky

Best Vantage, Inc., and the OODA loop

 During my research of technology-centric businesses, believe it or not, a food

marketing company caught my eye. Best Vantage, Inc. followed the military’s example

for their use of the OODA loop. Best Vantage has developed some useful tenets that,

ironically, the military will find useful as an example to follow for software development.

If you look at the following figure, (Figure 4), you may see why this strategic food

marketing company got my attention:

Figure 4 - Best Vantage Inc., Strategic Food Marketing and OODA Loops

 26

So what is Best Vantage doing that is so useful for software development?

Within the Best Vantage Inc. Newsletter, from January 2009, author Daniel Best wrote an

excellent article titled “Marketing inside the loop”. In this article, he attributes thanks for

“…the privilege of flying combat aircraft competitively under the instruction of U.S. Air

Force pilots, to whom he remains eternally grateful for the life lessons learned.” Mr. Best

uses full military parlance, citing Col. John R. Boyd and Wayne Gretzky to describe how

the food marketing business should think of marketing as a strategy. Although I found

the entire article amusedly interesting, there are two main nuggets of wisdom I wish to

discuss here.

I particularly like the aspects of “rapid decision-making capability”, “short

product develop cycles”, “strong customer relationships”, and “ready access to capital” or

“cash on hand”. Also, the Energy-Maneuverability concept translates well into the

acquisition-equivalent concept of ‘Resource-Maneuverability’. These first nuggets of

wisdom are in the following excerpt from Best’s article [15]:

Question: How does your company’s management structure empower you to get inside

your competitors’ O.O.D.A. loops?

Energy and Maneuverability (E&M):

Speed of execution hinges upon overcoming the energy and maneuverability of your
competitor. For fighter pilots, “energy” translates into altitude (potential energy), thrust,
gravity and speed (kinetic energy) and flexibility or maneuverability (pilot experience,
aircraft design).

What are the business equivalents of potential (stored) and kinetic (unleashed) energy?

 27

A company’s potential energy can be construed as follows:

 • An effective and rapid decision-making capability to confront competitive
threats.

 • High-quality and motivated personnel.

 • New, not-yet-introduced technologies and short product develop cycles.

 • Strong customer relationships (stored goodwill or karma).

 • Strong brand identity, a quality image and high visibility.

 • A low debt /asset ratio and ready access to capital.

 • Cash on hand.

A company’s kinetic energy might include:

 • Hard-hitting, highly visible and effective marketing campaigns.

 • New technology introductions of demonstrated value that capture the
imagination of the marketplace.

 • An enthusiastic, aggressive sales force, armed with effective marketing tools,
compelling sales propositions, and T&E budgets.

Companies should strive to overcome their competitors’ energy levels. A company with
poor marketing energy risks being plucked out of the air by higher-energy competitors.

In my view, all of these aspects need to be under the control of a single

organization that is low-level enough to understand the customer, while high-level

enough to understand the interdependencies and interaction of the project as a whole.

The second nugget of wisdom includes the set of all questions gleaned from

within Best’s article. I’ve extracted them into Table 3 and translated the questions into

their software development equivalents:

 28

Table 3 - Important Questions Gleaned From Best Vantage Inc.

Best Vantage Inc. Questions Equivalent Software Development

Lessons

Are you satisfied that you enjoy a clear,

unobstructed view of your market,

your customers, and yourself?

Do the Program Manager and the Software

Developers know the full job process of the

targeted software users?

Does your company have the internal

capabilities to forge rapid decisions when

necessary?

What is the shortest time for approving the

simplest change? Do decisions require

resolution at weekly meetings? You are only

as speedy as your least speedy change.

Is your company pro-active or reactive to

changing circumstances?

Are we behind schedule?!? Are we seeking

feedback from the users?

Does your organization’s command structure

permit you to sift and prioritize available

options to arrive at the best possible

decision…quickly?

Who is required to approve changes? Does

change require a committee, small group of

relevant experts, the program manager, … the

President?

How does your company’s management

structure empower you to get inside your

competitors’ O.O.D.A. loops?

Is the decision authority delegated to the same

group that is also responsible and accountable

for success or failure?

What would a self-audit of your company’s

energy states reveal?

How good is our energy position?

How tight can we turn and adapt? How much

authority or budget do we command? How

good are we at implementing changes?

In an environment squeezed by reduced profit

margins and overworked personnel, is your

company becoming more, or less maneuverable?

What is the energy trend? Is it “Good getting

better”, “Good getting worse”, “Bad getting

better”, or “Bad getting worse”?

Google, Inc., on ‘Beta’ software and Agile Practices

“To say that companies or CIOs are reluctant to embrace agile is like

saying they wouldn’t take aspirin for a headache … and they’re not only

not taking the aspirin, they’re banging their heads against the wall and

wondering why it hurts.”

— Jim Johnson, Standish Group Chairman

Google, Inc., is a widely recognized company that is popular for its extremely fast

and accurate internet search engine. To a slightly lesser extent, Google is also well-

known for their lead in development of trend-setting software technologies for

 29

simplifying, filtering, and presenting large amounts of data in a highly intuitive way that

even computer-illiterate people can easily learn to use. Many businesses use Google

technology for their own internal network search engines. Government organizations,

such as NASA, have partnered with Google to display NASA’s Hubble Space Telescope

images, and other space imagery, within their Google Earth and Google Sky applications.

One may also be aware that most of Google’s software always seems to be in

“Beta” mode — an indicator typically meaning that software, although publicly released,

it is still in draft. Perhaps it is Google’s way of legally avoiding responsibility or liability

when your data is lost from a Google Mail account? Mr. Paul McNamara, of Network

World, asked Google about the beta issue and documented his correspondence in his

PCWorld article “Google Has Gone and Redefined 'Beta'”. I think the following quote

from Google speaks a lot about Google’s attitude toward software development in a fast-

paced world [16]:

We believe beta has a different meaning when applied to applications on

the Web, where people expect continual improvements in a product. On

the Web, you don't have to wait for the next version to be on the shelf or

an update to become available. Improvements are rolled out as they're

developed.

Wow! I’m not sure that the military is ready to just call everything ‘beta’ and release

software that is not tested and certified, but I do think we can learn from this philosophy

of “continual improvements” that are “rolled out as they’re developed”. Acquisition is

such a difficult process to get through, given JCIDS, the PPBE system, JTIC security

certification, etc., that we tend to group as many capability requirements as we can within

each release or software update. In essence, we are catering to the time it takes to cycle

 30

through the process rather than making the process cater to how fast we wish to cycle

through new changes.

It does not surprise me that Best Vantage, Google, and many other business

industries seem to be grappling with the same fundamental challenges of keeping up with

rapid change. In my research of these businesses, the idea of ‘Agile Development’,

‘Agile Practices’, ‘Agile Manifesto’, and other similar ‘Agile’ concepts occurred often as

a common technique for adapting to the fast-paced world of IT software development.

Like any buzzword methodology, ‘Agile’ has been overused and ‘stolen’ by many

different organizations claiming to be ‘Agile’. The Air Force even adopted the term in

November, 2001, according to the Program Manager magazine article “Acquisition

Center of Excellence Will Drive New Capabilities to the Warfighter” [17]:

The new office, led by a Senior Executive Service member, also will be the

driving force for implementing “Agile Acquisition,” a sweeping series of

initiatives designed to streamline the Air Force's acquisition systems.

The plan was endorsed at a meeting of the Air Force's four-star generals

and senior civilians in November 2001.

Some organizations have adapted honest and productive efforts for ‘Agile’ while many

others have only attempted to rebrand their poor processes with this new jargon. One

programmer, Steve Yegge, likened ‘Agile’ to fad diets, in that there are many diet plans

out there and people want them to work, but nobody seems to lose any weight. Thus

Yegge describes the existence of both ‘Good Agile’ and ‘Bad Agile’ [18]:

Well, as I mentioned, over the past year I've had the opportunity to watch

both Bad Agile and Good Agile in motion, and I've asked the teams and

tech leads (using both the Bad and Good forms) lots of questions: how

they're doing, how they're feeling, how their process is working. I was

really curious, in part because I'd consented to try Agile last Christmas

("hey, it can't hurt"), and wound up arguing with a teammate over exactly

what metadata is allowed on index cards before giving up in disgust. Also

 31

in part because I had some friends on a team who were getting kind of

exhausted from what appeared to be a Death March, and that kind of

thing doesn't seem to happen very often at Google.

Yegge’s final sentence says a lot — Google has ‘Good Agile’, while his friends did not.

In the same vein of thinking, I like to say “Before evaluating what is said, first evaluate

who is saying it and why”.

So what does Google do for its agile software development? In 2006, Google

published a slideshow document about “Agile Practices on Real-World Projects.” In this

document, Google lists the following ‘Agile’ principles:

Figure 5 - Google software development 'Agile 101' [19]

To the uninitiated, some of this may or may not make sense; so I’ll make my best effort

to translate each of Google’s ‘Agile 101’ bullet statements in the following paragraphs.

 32

Clear, customer visible stories

First, a story is a human-recognizable statement or sentence that defines the

customer’s requirements for the software. An example: “As an authenticated user, non-

administrator, I must be able to drag-and-drop graphic images from the scheduling

module to the reports module so that I can present my schedule solutions to my

commander.” The key difference between ‘stories’ and JCIDS ‘requirements’

development is that ‘Agile’ advocates an “ongoing, unfolding conversation about the

details” and focuses on the “conditions of satisfaction” [20]. “Customer visible” simply

means that it is the customer that must understand the story statement. After all, they are

the reason for the software programming. Several companies indicated that they teach

the customer how to write their own stories along the way. Regardless, the customer-

developer interaction is early and continuous through the use of stories. Stories, like

requirements, are rank-ordered according to customer preference.

Test-Driven Development

The ‘test-driven’ concept advocates the idea that the testing procedures for

ensuring the software works should be written before the software is coded. No test pilot

takes off on a test sortie without a detailed, coordinated, and approved test plan… neither

should software developers start coding before knowing how to test. This test plan also

aids documentation — something often skipped by ‘bad agile’ developers. Stories

naturally lead into test statements, and this brings testing into the development cycle early

in a concept called Story-Driven Test Development (STDD).

 33

The HashRocket company, (named after the image likeness of the text called a

hashrocket “=>”), is a pioneering web application consultancy group that specializes in

the Ruby programming language and embraces the test-driven concept wholly.

According to HashRocket, risk is minimized by building and testing often:

Building a successful web application is rocket science ...but it doesn’t

have to take forever. Hashrocket is an expert consultancy group that uses

best-of-breed technologies like Ruby on Rails to deliver the highest quality

software in the least amount of time.

Figure 6 shows a screenshot of actual stories, from the HashRocket company, along with

programming remarks on the right-hand side and scenario statements for how to test for

‘satisfaction’ of the requirement[21].

Figure 6 - ‘Stories’ are requirements the customer and developer understand

Continuous Integration

With continuous integration, the various code modules are tested before mixing

them together with the rest of the software application. Furthermore, according to

Google, “the entire application is kept in a deployable state from the first week.” [19] In

this way negative synergistic effects and other errors are detected early in the process

rather than just in time before a design review.

 34

Short Iterations

Google uses one week iterations “for easier course corrections, and [to] shorten

the feedback cycle.” [19] This is crucially important in that the short cycle, combined

with a continuously deployable application, allows the customer to validate the design

requirements through “play testing”. Our current processes, by contrast do not provide

anywhere near this amount of testing and customer validation. This means that any

errant programming continues on the wrong vector much longer, until it is much costlier

to fix. In the IEEE Software article, “Is Internet-Speed Software Development

Different?”, the authors advocate agile development over traditional methods because it

provides such a flexible environment for highly dynamic requirements: [22]

Developing software at Internet speed requires a flexible development

environment that can cope with fast-changing requirements and an

increasingly demanding market. Agile principles are better suited than

traditional software development principles to provide such an

environment. –IEEE

Pair Programming — crew concept/ formation flying for computer programmers

In pair programming, two programmers work together on a single machine —

each programmer with a keyboard and mouse. I liken this to formation flying, or the

crew concept, for Air Force aviators. It takes training and familiarity at first, but the

benefits and synergy of two heads are better than one. Pair programming is one of the

more contentious concepts of agile programming and ‘Extreme Programming’ (a form of

agile). People tend to either love it or hate it. Even Google acknowledges that pair

programming is “…probably the most controversial part of [Extreme

Programming].” [19] Many feel that two programmers can get more done separately,

 35

working in parallel on different code modules. In practice Google claims that pair

programming “accelerates knowledge transfer” because “Your 80/20 rule overlaps

favorably with your partner’s 80/20 rule.” [19] Visiting programmer Mr. Paul Barry

describes learning about ‘ping pong pair programming’ at HashRocket, and how it aids

test-driven development [23]:

Pair programming, at least to the degree that it is done at Hashrocket,

was a new experience for me. Every developer works in a pair

programming setup, with a laptop hooked up to a 30-inch display and two

keyboards and two mice. Having a large monitor, two keyboards and two

mice may seem like a luxury, but it really helps you get into the flow of

pair programming.

One pair programming technique that makes TDD easier is ping pong

pair programming. When doing ping pong pair programming, when you

sit down to build a feature, the first person in the pair writes the test. Next,

the second person in the pair writes the code to make the test pass. Then

the second person writes a test for the next feature, and the first person in

the pair implements it. By repeating this process throughout day, you have

several benefits. First of all, it avoids the scenario where one developer

does most of the work and the other developer just zones out and gets

distracted by something else, because you are constantly switching back

and forth. Also, like two people who go on a diet together to help each

other stick to it, one developer doesn't let the other developer get lazy and

skimp out on the tests for a specific feature. That doesn't apply just to the

test. As long as you have a pair of two experienced programmers, one of

them [isn’t] going to let the other get away with writing a nasty piece of

code. It's like a real-time code review.

Extensive Customer Involvement

Google believes that the “customer owns the priorities, [and] the developer owns

the cost estimates.” This means that a feature isn’t marked as “done” until it is installed

on the test demonstration server and approved by the customer. The story-driven and

test-driven aspects ensure continuous customer-developer involvement, which in-turn

ensures a solid software application. [19]

 36

How Google estimates complexity instead of duration or budget

Google advocates estimating complexity instead of duration, since people are

“better at estimating complexity than duration.” [19] They use a point system which

estimates the complexity of each agile programming story in terms of 1, 2, or 3 points,

based on the following table of criteria:

Table 4 - The Google point system for estimating complexity [19]

One point “I know exactly how to do this, and can do it in half a day.”

Two points “I know exactly how to do this, but it will be some work.”

Three points “Somehow we will implement this feature.”

They go on to describe that three-point stories often become even more complex, driving

the need to break down the story into smaller stories. “[Larger than three-point] tasks

have fractal complexity: Small tasks are more predictable than large ones”, so Google

always tries to break the stories down to three-points or less.

 The customer (or PM) takes the stories the developer estimated for that week and

prioritizes them, while keeping the complexity point estimates in mind. Google

programmer development teams (pairs) begin coding the story modules. Using the point

estimates, Google tracks how many points are coded by the development team each

week. In their experience, “a focused team gets about as much done each week as it did

the week before.” This velocity tracking method builds trust between customer and

developer. Cost features, based on these estimates, are openly exposed to the customer,

giving them greater control and creating “alignment between the developer and the

customer.” [19]

 37

Does Google’s agile programming method scale well to large projects?

Google provided three examples to counter the following agile programming

myths about scalability:

• “Agile is great for small projects, you can’t make it work in a big
company.”

• “Agile is great for exploratory projects, where you don’t know the
requirements up-front, but not for projects with big up-front
requirements.”

• “Agile works for Greenfield projects, but not for big legacy applications.”

In the most telling example, a large web application was developed using

traditional parallel development methods, but the persistence layer portion of the code

wasn’t ready by the time the user interface coding needed to start — parallel anything

breaks down when dependencies are involved. Google used agile programming methods

and reduced the time-to-market for the application “by months on a 6-month release

cycle.”

Google described how non-agile coding quality was far inferior to the test-driven

development quality of agile programming. An application had been developed where

one of the subsystems was coded with non-agile practices. This subsystem was less than

10 percent of the size of the whole application, but contained more than 75 percent of the

coding errors. This one subsystem caused the whole application to delay release by 4

weeks — one third of the planned 12 week release cycle! [19]

 38

DISA on improving software development using agile methods

Software Development

Dr. Steven J. Hutchison, Defense Information Systems Agency’s (DISA) test and

evaluation executive, recently wrote an extensive article titled “Reinventing IT Test and

Evaluation”, in April of 2009. On the subject of Software Development, Hutchison

writes the following [24]:

Once upon a time, DoD acquired IT following a different process from

weapons systems. In 1996, the department merged the acquisition of

automated information systems into the DoD5000 series. When you think

about that, the IT revolution was in full swing in 1996, with major online

businesses, such as eBay, Amazon and Google, emerging as IT leaders.

Given what emerged in the commercial sector in the decade-plus since,

hindsight might suggest that DoD’s “one size fits all” model has just

about eliminated innovation in approaches to acquisition and results in

much of the department’s cost overruns, poor performance and lengthy

schedule delays. In fact, a recent analysis of major automated information

systems shows that the average time from program start to initial

operational capability, following the DoD5000 model, is 91 months.

Hutchison then describes how the commercial sector has developed many

approaches to improve software development and cites agile programming as “… one of

the fastest growing and most productive approaches to software development.” He

further advocates that these agile principles “must be part of the requirements process,

development, testing and oversight.” He continues to describe how we should not front-

load our expectations, nor expect everything in the Capability Development Document

(CDD) to be delivered “… in the first increment”. Hutchison feels we should be required

to “…prioritize the requirements within the CDD, and focus the iterations on the

 39

immediate needs of the war-fighter — the one or two capabilities that will have

immediate beneficial impact if fielded” [24].

The agile PM has to transition from the waterfall approach to a highly

collaborative environment where all stakeholders work together to

develop, test, fix and verify solutions. In DoD’s evolutionary acquisition

waterfall process, each increment is guided by the JROC, and managed to

the same set of milestones. This is not an agile process [24].

Software Testing

On the subject of software testing, Hutchison declares the following [24]:

For T&E to be an enabler in such an environment, testers must be equally

agile. Long lead time test plan approvals and lengthy staffing of test

reports cannot be the standard, or T&E risks becoming an obstacle rather

than an enabler. The approach I recommend is designed to achieve this

objective. It is an integrating model where activity by one is accepted by

all.

I refer to the model as capability test and evaluation (CT&E), and I

describe it this way: “one team, one time, one set of conditions.” The

intent of CT&E is to focus the four T&E activities on the goals of that

iteration, and merge them into one short duration test period.

Hutchison considers testing as yet another “overly prescriptive process,” with four

separate test activities occurring within each development cycle in the DoD IT T&E

community. These four activities include developmental, operational, JITC, and IA

certification and accreditation testing. These different organizations compete with each

other for “time to conduct their events, under different test conditions, for different

decision-makers”.

Despite the commonalities of these test activities, Hutchison laments our lack of

coordination and teamwork, which leads to differing vectors for the different test

activities [24]:

 40

Unfortunately, we don’t always conduct these test activities in an

integrated manner; nor do we combine results in evaluation reports, and

this can mean that different information is being presented to the decision-

makers — the milestone decision authority, interoperability certifier and

the IA certifier, or “designated approving authority.” Acquisition

decision-making would be greatly improved if the various T&E activities

were synchronized to produce a single evaluation that satisfies the needs

of all three decision-makers.

Additionally, the test process itself “typically exceeds six months” and it is not conducive

to agile programming processes that need to test all of the time [24].

Improving on JITC certification

In 2008, DISA made concerted efforts to improve upon lengthy and cumbersome

portions of the test process. JITC certification is an important but huge obstacle in the

grand scheme of things. Despite DISA efforts, they have yet to gain full support for these

changes. According to Hutchison:

Last year, a combined industry/government council on OT&E

recommended sweeping changes to the format and content of the T&E

Master Plan (TEMP). During the committee discussions on the proposed

TEMP, it was clear that everyone thought the ideas were good and should

be pursued. Unfortunately, no decisions were made to experiment with the

format, and it looked as if the good work of the group was going to fall by

the wayside.

 41

Significant time savings can be accomplished with simple reforms to the testing

process, as Hutchison points out:

DISA volunteered to use the new TEMP for the Net-Centric Enterprise

Services program, since a new TEMP was required for the pending

Milestone C. For comparison purposes, the Milestone B TEMP exceeded

360 pages, required 18 signatures and took over six months to obtain

approval once it began the staffing process. The new document prepared

for Milestone C, which is generally a far more detailed plan, took only 70

pages, 14 signatures and 90 days from the beginning of document

preparation to final approval. That’s a successful pilot by any measure.

Given the DISA experience, the rest of the DoD should follow their lead in adopting agile

methods to improve JCIDS. Hutchison recommends immediate update of the DoD 5000

regulations, but advises that the acquisition community should not wait for it and should

migrate toward agile development and testing. Hutchison concludes his comments on

agile and testing with recommendations for supervision [24]:

… we need agile oversight. We can improve the way we acquire and test

information technologies by focusing on the immediate needs of the

warfighter and development in short duration sprints. In T&E, a one-

team, one-time, one-set-of-conditions approach is essential to delivering

improved capabilities in significantly less time.

Determine how to integrate with existing JCIDS process

“… agility is an important attribute for a successful project since it is the

most effective way of dealing with uncertainty and avoiding or if

necessary responding effectively to crises.”

— Steve Adolph, What Lessons Can the Agile Community Learn

from A Maverick Fighter Pilot?[25]

The last major area of study involves how we can better integrate efforts we

already have into the acquisition process. Not only should we adopt the best practices of

the agile development community, but we need to take advantage of the experimentation

 42

efforts in action today. First, we need to establish a balance between JCIDS, traditional

development, and agile development.

Balancing between JCIDS and Agile: Learning from the JPADS ATCD success

[JPADS] revolutionized the way we resupply the War-fighter…Saving

American blood is a good thing, and this will definitely do it.

—Maj Gen Scott Gray, Commander, Air Mobility Warfare Center

Choosing between a traditional method and the agile method is not and “either/or”

decision. We can use the most conservative way of doing acquisition, in terms of

resource efficiency, or we can adopt agile techniques to shift our priority toward ‘time-to-

market’ efficiency. I argue that we can adopt most of the agile concepts and improve

development speed and efficiency without reducing quality or increasing risk. Yet, even

if we make significant improvements, there will always be a need for rapid custom

software development for unforeseen, unplanned, and unbudgeted urgent war-fighter

needs.

We should simply use risk analysis to determine whether or not to use JCIDS and

traditional acquisitions vs. JUONS-type of agile software development and procurement

method. There is a recent non-IT example we can learn from — the Joint Precision

Airdrop System (JPADS). This system uses GPS-guided steerable parachutes to

accurately deliver needed supplies to the war-fighter — even in the high-altitude,

mountainous terrain of Afghanistan. JPADS allows the cargo aircraft to remain at high

altitude, out of the range of most enemy anti-aircraft weapons, and still get the cargo drop

where it is needed.

 43

In 2004, JPADS started out as a Joint ACTD with a few prototypes for various

sizes of parachutes and weights of cargo. JPADS became a formally funded program in

2008, largely due to the ongoing operations in Afghanistan for Operation ENDURING

FREEDOM. I often wonder if JPADS would have survived had the urgency of war not

driven the high-level visibility needed to encourage funding for this revolutionary system.

Even so, it took a “partnership of U.S. Joint Forces Command, U.S. Transportation

Command, U.S. Special Operations Command, U.S. Army, U.S Air Force, U.S. Marine

Corps, and others…” to help make it work, according to the Under Secretary of Defense,

in the article, “Success Story: ACTD Helps War-fighters Get High Altitude, Accurate

Parachute Resupplies”.

Figure 7 - JPADS enables standoff precision airdrop using guided parachutes[26]

There was difficulty of retroactively performing JCIDS processes and analyses on

the JPADS ACTD. I saw this firsthand while working in the Mission Planning Systems

branch of the Plans and Programs division of Headquarters, Air Mobility Command

(AMC). Risk Analysis had determined that the JPADS ACTD was an urgent war-fighter

need and it was funded accordingly for rapid development. Future increments of JPADS,

however needed to proceed through normal acquisitions methods — including a

 44

Functional Solutions Analysis, Analysis of Alternatives, the production of an Initial

Capabilities Document (ICD), etc. When many of these initial JCIDS steps are made to

determine the risk of proceeding toward low-rate initial production and eventually full-

rate production, it seemed that JPADS had already passed these hurdles—since avionics

integration requirements were already accomplished. Indeed the Capabilities

Development Document (CDD) was approved for use in lieu of the Capability Production

Document (CPD), which enabled Milestone C approval for full-rate production.

Regardless, just as changing JCIDS ACAT levels generates cumbersome “what if”

questions and retroactive process requirements, the JPADS ACTD also had to overcome

these ‘square peg, round hole’ issues when it was refactored into JCIDS.

A better way to integrate advanced technology: The WIDE/GRS ATD Struggle

JPADS was a success story in that it was a valuable system that quickly achieved

operational fielding to meet urgent war-fighter needs. JPADS was also successfully

integrated into JCIDS for future increments. Another ATD that I had experience with

has, to date, not been so privileged.

The Tanker Airlift Control Center (TACC) commands and controls all transient

AMC aircraft throughout the world. A TACC-managed aircraft is landing or taking off

somewhere in the world every 90 seconds, so the TACC can be a busy place at times.

Several custom programming projects had been created by people with computer skills,

usually evolving spreadsheets that had been made to help TACC controllers with

repetitive tasks — improving some of the customized software used by the floor

operators to keep track of the nuances of each AMC mission they controlled.

 45

Much of the command and control (C2) software was developed like a large

database, where the mission details, aircraft tail numbers and details, aircrew names and

details, cargo details, flight plan and diplomatic clearance details, weather and other

details, were all centralized for improved management. Although state-of-the-art at the

time, many of these legacy systems consisted mostly of text displays with massive

amounts of look-alike data, see Figure 8.

Figure 8 - Legacy Software Tool showing hard-to-read text displays [27]

In 2006, a team from the Air Force Research Laboratory (AFRL) was working on

an ATD for visualizing C2 data. The Work-Centered Interface Distributed Environment

(WIDE) and Global Response & Synchronization (GRS) ATD’s were both managed by

the Human Effectiveness and Information Directorates at AFRL. This team took a

human factors approach toward simplifying and filtering massive amounts of mission-

related data and presenting it in an intuitive graphics display for the users to better

 46

command and control with. WIDE is a Work-Centered Design brand of the Cognitive

Engineering field of human factors [28].

I had the opportunity to evaluate WIDE and GRS, validating it from an

operational perspective, and I was extremely impressed with the C2 capabilities offered.

I often described WIDE/GRS to be the “Google Earth for Command and Control” in that,

like Google Earth, the software was graphical and easy to use. It let you refine, filter, and

re-filter the data down to only what you wanted to see — significantly reducing problem

complexity, (see Figure 9).

Figure 9 - WIDE/GRS ATD showing the Multi-Mission Timeline View

WIDE featured fully interactive mouse-enabled drag-and-drop capabilities to

graphically manipulate and query the data visually. If necessary, the raw text data was

available for precise and detailed analysis. In this way, WIDE/GRS presented the best of

both worlds by allowing the user to quickly operate on the data graphically and

 47

intuitively, while also allowing the user to ‘drill down’ into the textual data as needed,

(see Figure 10).

Figure 10 – WIDE/GRS ATD showing interactive timeline [28]

Experienced TACC floor controllers are able to fuse the massive amount of

dynamic data in their head and come up with solutions, but this data fusion is difficult to

learn and it takes a while to immerse and become familiar with the data once ‘on shift’.

WIDE/GRS automated much of the fusion and elimination of incompatible solutions.

This reduced the amount of data and simplified the decision process of weighing options

in order to arrive at a solution.

The improvement in timeliness and increase in quality of solutions and decisions

was born out in field testing with operational TACC controllers. Tests were run using

both the legacy software systems (information-equivalents similar to what the controllers

 48

were already familiar with in the TACC) and then using the WIDE/GRS software. After

a 30 minute familiarization training session, the controllers were presented scenarios and

evaluated on the timeliness and quality of their solution to the scenario. An example

scenario might involve finding the best airplane to perform an emergency medical

evacuation of a patient, while minimizing the impact on other missions. WIDE/GRS

testing showed a drastic improvement over legacy methods, especially for the less

experienced controllers, and enabled them to get the correct solution in significantly less

time. A sample of the test results are shown below, in Figure 11.

Figure 11 - WIDE ATD reduced time and error by more than half [28]

A concerted effort was made to integrate WIDE/GRS technology into existing

TACC C2 software. However, due to funding difficulties and issues with building a

dynamic interface to the centralized mission data, the efforts to field WIDE/GRS

technology to the operational TACC controllers are currently on hold. There is an

 49

ongoing effort to integrate this ATD into software used by USTRANSCOM, (the result

of which has yet to be determined). Perhaps it will be saved from the metaphorical

warehouse of crates …once we can get “top men working on it … top men” [29].

Figure 12 - Crate Warehouse from the movie "Raiders of the Lost Ark" [29].

Increase the use of MAJCOM and AOC ‘business centers’

For much of my career I’ve developed and improved upon custom software tools,

saving users from endless stacks of sticky notes and automating many of the tedious and

error-prone tasks often encountered when managing people, airplanes, and cargo. The

problem with these ‘stove piped’ efforts is that most military officers move every couple

of years and there is no maintenance plan for the stovepipe software, other than tracking

down the original programmer for troubleshooting.

 50

Despite the stove pipe issue, the alternative was also undesirable. With the

increasing workload and decreasing manning, we’ve become more and more dependent

on technology to fill the gap, yet that needed technology capability takes years to develop

once the need for it is realized. Hence, there have been many occasions to create

stovepipe software that was meant only to fill the gap until a formal software acquisitions

effort came in to replace it.

Often, nothing has been developed to replace stove pipe software. In fact, a

software tool I developed, in 2004, for deployed operations command and control was

still being used the last time I checked in 2007. I released an update to the tool in 2006,

(based on unsolved challenges I had since figured out), making sure it properly calculated

for leap years and other ‘future-proofing’ efforts. In some respects, this software enabled

the bad aspects of our system in that, had the software not been developed, the urgent

operational need for a formal acquisitions effort would have demanded new technology.

The Happy Medium

The TACC has a software ‘business center’, as it was called in 2007, which has

since become a ‘rapid application and requirements development branch’. This branch

has several civilian personnel working with military leadership. They developed, among

other things, custom tools requested by the TACC commander, et al. They programmed

web applications and designed custom interfaces between some of the stove pipe

software and larger enterprise applications. They were not funded or manned adequately

enough to take over all of the stove pipe software that had been developed, but they did

 51

take over some of the software maintenance. In a TACC briefing, I likened the IT

software development environment as pictured in Figure 13, below.

Figure 13 - Software Development Turn Circles

The TACC business center was a happy medium between stove piped

programming and waiting too long for desperately needed software tools deemed not

important enough for the budget. Again, I fault the way we budget, not necessarily how

much we budget. Follow this scenario, for example, when your hard disk fills up with

files, do you try to find one or two large unneeded files and delete them, or do you delete

ten percent of every file? Of course, you don’t delete ten percent of every file, since this

would corrupt all of the files! Why then, when we need to trim our budgets, do we seem

to think it is ‘fairness’ that matters, cutting all programs equally? The end result is that

 52

every program is now corrupted and must adjust their acquisition strategy — often by

dropping features or by extending the development timeline and costs into the next fiscal

year’s budget.

Linking MAJCOM and AOC business centers with ATDs, ACTDs and JACTDs

My overall argument with respect to business centers is that we lose time and

money while we wait for large software programs that take too long to field. Stove pipe

programmers are filling the gap, but are not a viable long-term answer either — there is

too much risk in depending on unmaintained, often incompletely developed software

tools. The answer is to increase the use of business centers. Furthermore, these business

centers can and should link with ATDs, ACTDs, and JACTDs. I believe, given the agile

principles explained earlier, that MAJCOM or AOC level business centers have the right

people to play the ‘customer’ role with developers of all types, including research labs

such as AFRL and DARPA. The business center can also create a viable, funded,

sponsor for ‘pulling’ advanced technology efforts into the JCIDS process, feeding into

the ‘experimentation’ and ‘concept refinement’ areas. We must make integration of at

least some advanced technology efforts the ‘rule’, not the ‘exception to the rule’.

 53

Pros of MAJCOM and AOC business centers:

• Software is tailored and custom developed to the unique requirements of users

• There is more face-to-face interaction between customer and developer

o This improves software quality by better refining requirements

• There are fewer competing priorities and budgets within a MAJCOM or AOC

• Less ‘one-size-fits-all’ software development

• Business centers can foster innovation through working groups and conferences

o Business centers exchange lessons learned, standards, and frameworks

• Reduces single-point-of-failure dependencies on any particular software

• Users may get the software tools they need instead of waiting for enterprise

developers to build low-priority features into already bloated applications

Cons of MAJCOM and AOC business centers:

• Duplication of effort occurs when two different centers develop similar tools

o Budgeting can more efficient with increased economy of scale

• Tools for one business center may be incompatible with another’s

• Different language/procedures/cultures develop because different tools are used

• Must force cross-flow and interplay between centers

o Working groups and conferences require significant effort

• Resistance to adopting another center’s products, organizational inertia

• Decentralization complicates centralized security management

 54

IV. Conclusions and Future Research

“Program turbulence is #1 obstacle to commercial investment in defense

projects”

- Norm Augustine

Findings

The following conclusions were reached: (a) software projects must be scoped

and scheduled for development cycles on the order of months, not years, and use open

architecture, Agile Development methods, and scalable designs with modular code;

(b) budgets must be stabilized for long-term integrity, with a software development

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of

MAJCOM- or AOC-level business centers must be encouraged and funded to produce

tailored software modules that interface with larger agile programs built to accept these

modules; (d) we must take advantage of ATCD and ATD efforts from research

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate

System Program Office, to produce and field operational software (by default, not by

exception); and (e) periodic software development working groups and conferences

should be continued, but with emphasis on standardization and sharing of lessons learned

between services, MAJCOMs, and AOCs.

The aviator part of me thinks of the two-year POM process, JCIDS, and other

process limitations as a large turning radius, limiting the maneuverability of our

metaphorical acquisitions aircraft. The IT pace of change is like the tiny Mig-15 fighters

of the Korean conflict… small, able to tightly turn, and able to out maneuver our less

agile F-86 Sabre jets. Yet, with our superior tactics and training, our pilots were enabled,

 55

empowered, and indeed expected to out-fly the Korean enemy — which they eventually

did with better than an eight to one kill ratio. Will we be able to do as well when the

‘cyberspace dogfight’ comes upon us?

Figure 14 - The Software Development Dogfight

Future Research

Develop Separate DoD 5000 Instructions for Information Technology

Future research should continue with the development of IT acquisition as a

separate entity from both Space and non-Space acquisition (refer to Figure 2 and

Table 2). The history of the separation of space technology from non-space technology

should be accomplished. We’ve developed space systems long before JCIDS and

traditional acquisitions were developed. Perhaps the same reasoning that was used to

treat Space acquisition differently from non-Space acquisition can be replicated to bolster

the argument for the additional separation of IT acquisition from non-IT acquisition. The

review should include applicable portions from the National Security Space (NSS)

Acquisition Policy 03.01, the DOD Instruction 5000.1 and 5000.2, AFPD 63-1

Capabilities-Based Acquisition System, and any currently effective memoranda.

 56

Reassess required Key-Performance Parameters (KPP) for IT

Every acquisition program must include the net-ready KPP, which ensures

compliance with the net-centric operations and warfare model, compliance with Global

Information Grid (GIG) profiles, Information Assurance (IA) security requirements, and

Integrated Architecture (IA) concepts [5]. Future research should reassess and revise

these requirements. In general the net-ready KPP has been positive, but we need to

modernize it a bit. Net-centric capability is good, while net-centric over-dependence is

not.

My experience is that IA security has always been an afterthought. Upfront and

continuous security focus prior to JITC certification helps. There is still a need to

improve the timeliness of JITC certification. If programs ‘think security’ from the

beginning they will be much better off. Investigate ways to improve security focus,

balanced with accessibility. Security requirements should include the ability to log or

analyze appropriate information such that data manipulation (malicious or accidental) can

be detected. We may not always prevent a security breach, but we must have enough

data for forensics analysis to determine what happened.

Accessibility always competes with security. In the past we’ve often built

security with the mindset of a fence between inner and outer domains. We must become

more layered than this, and consider a sort of ‘Plan B’ KPP. In my mind, a ‘Plan B’ KPP

provides a failsafe capability for when the power goes out, the network goes down, or

parts of the system have been hacked or corrupted. All systems should have the ability to

print to hard copy, capture screen shots, or similarly store data with some type of robust

 57

portable means. The intent is to not only foster the failsafe capability, but to enable a

‘bug-out’ situation to a new location for continued operations under duress.

Lastly, Human Factors have long been highly considered in the development of

fighter cockpits, with concepts such as the Heads-Up-Display (HUD) and HOTAS

(Hands On Throttle And Stick). There has been a tendency to disregard human factors

when it comes to IT software development — or it is too a low priority. Instead, we must

treat computers like a fighter cockpit, monitors and displays like a HUD, and keyboards

and mice like HOTAS. We should adopt a standardized description for software

interface controls, (i.e. we should not have to explicitly request that the mouse-wheel

functions for scrolling a text display!). Look to Apple Computer, Microsoft, Google, et

al, for inspiration in this regard — they provide both good and bad examples of human

factors integration. Perhaps we can hire them for training and project management?!?!

Determine acquisition categories based on risk and complexity, not cost estimates

Acquisition categories are primarily based on the costs estimates, rather than risk

or complexity of the program. Of course, the JROC may always designate a program as

“Joint Special Interest”, based on any criteria they may choose. However, an area for

further research should investigate the use of a non-budget-centric method for

categorizing our programs. This is especially so, given Google’s experiences with agile

— using complexity estimates rather than cost or time estimates.

Similar to the desire for event-based criteria instead of time-based criteria for

development strategy, we should have complexity-based criteria instead of cost-based

criteria for determining acquisition category. A risk analysis process can determine this

 58

categorization (which should still consider cost). The aim is to prevent shortcuts and

increased risk in an attempt to avoid a Nunn-McCurdy breach (when cost overruns

exceed 15%). Instead, the aim should be to reduce risk and avoid an escalation in risk-

category. A fast-paced program that becomes high-risk can be slowed down, if

necessary, without undue concern or focus on the budget impact. More people can be

dedicated to help with the workload of the high-complexity areas.

The fact that our budget process discourages changes across fiscal years must be

addressed in order to provide the flexibility for this system to work. Pilots learning to fly

in poor weather learn to focus on control instruments, such as the artificial horizon

indicator, rather than performance instruments like the altimeter or heading indicator.

Budget measurements like performance instruments lag too much to be use for proactive

control over the system. We must forge a different way to do our budgets and categories.

 59

This page intentionally left blank.

 60

Appendix A: Fundamental Concepts

Moore’s Law

In 1965, Gordon E. Moore, then director of Fairchild Camera and Instrument

Corporation, Semiconductor Division’s Research and Development Laboratories, wrote

an article in Electronics magazine titled “Cramming more components onto integrated

circuits.” In this article, he declared that the integrated circuit is “the future of electronic

itself” and successfully predicted that integrated circuits would lead to such controversial

wonders as “home computers — or at least terminals connected to a central computer —

automatic controls for automobiles, and personal portable communication equipment.”

Among other discussions of reliability and increased use of integrated electronics

within industry, Moore presented a graph not unlike the one pictured below, in Figure 15,

taken from Moore’s original notes. This image is reprinted and captioned according to

the Intel Corporation requirements. [30]

Figure 15 - Moore’s Law Original Graph

In 1965, Gordon Moore sketched out his prediction of the pace of silicon technology. Decades later,
Moore’s Law remains true, driven largely by Intel’s unparalleled silicon expertise.

Copyright © 2005 Intel Corporation. Used with Permission. [31]
http://download.intel.com/museum/Moores_Law/Images_Assets/Image_Usage_Guide_Readme.pdf

 61

If a line is drawn between the troughs of subsequent years, there is a linear

relationship between time and the number of transistors. This relationship is better

illustrated in the following Figure 16. The line of best fit approximates the number of

transistors doubling every two years.

Figure 16 - Moore's Law Linear Relationship [32]

 62

Rock’s Law

According to Philip E. Ross, in his article “5 Commandments: The rules

engineers live by weren’t always set in stone”, Rock’s Law was first attributed to venture

capitalist Arthur Rock by Gordon Moore. Philip writes that the law is “…sometimes

called Moore’s Second Law, because Moore first spoke of it publicly in the mid-1990s,

we are calling it Rock’s Law because Moore himself attributes it to Arthur Rock, an early

investor in Intel, who noted that the cost of semiconductor tools doubles every four

years.” [33]

Rock’s Law is considered by many to be the economic opposite to Moore’s Law,

in that Moore’s law is limited only by the expansion of technology while Rock’s Law is

the counter force limited by economic reality. Eventually, the inability to cheaply

fabricate circuitry becomes the dominant limiting factor. Although many contest that

Rock’s Law is not holding true, and our efforts should instead focus on the fabrication

cost per transistor (not the fabrication tools), the Law is still useful in the broad sense.

Rock’s Law may need revision before it is to be used for accurate and precise predictions

of the future, but it will probably always be correct in that economics will tend to counter

and regulate any exponential technology growth.

 63

Joint Capabilities Integration & Development System (JCIDS)

The JCIDS process is a highly refined and thorough framework for the DoD

acquisitions process. Despite any shortcomings with respect to IT software development,

JCIDS and traditional acquisitions are a positive culmination of years of previous

acquisition reform efforts. I believe the best way to learn the nuances and details of

JCIDS is to simply dive right in and review the Defense Acquisition University’s (DAU)

website on JCIDS: https://acc.dau.mil/CommunityBrowser.aspx?id=28947. Also search

for the Defense Acquisition Guidebook for more information [5], and CJCSI 3170.01G

(or the most current reference), which outlines JCIDS policy.

The DAU site has several training courses, documents, and briefings. There is

even an interactive Integrated Framework Chart: https://acc.dau.mil/ifc/. You may click

on links within the chart to zoom in on detailed descriptions, with links to even more

information. Figure 17 shows the overview of the entire chart, where you can notice the

“V”-shaped patterns characteristic of systems engineering processes. Figure 18 and

Figure 19 both show a bit more detail on how JCIDS fits into the overall Defense

Acquisition System.

The challenge, as you study the acquisitions process, is to envision it within the

larger OODA loop of the USA, DoD, and military services. We must not allow the

control-performance lag introduced by JCIDS and the Defense Acquisitions System to

dominate our operations. Yet, we cannot just skip steps without consequence, so we

must be prudent in our continued reform of JCIDS and the Defense Acquisitions System.

 64

Figure 17 - JCIDS & Defense Acquisition System Integrated Framework Chart [5]

 65

Figure 18 - DoD Architecture, Requirements & Acquisition Process [34]

Figure 19 – JCIDS and the Defense Acquisition System [34]

 66

Colonel John R. Boyd

The late Colonel John R. Boyd was a USAF fighter pilot that developed the

energy-maneuverability theory for aerial combat that is still the core philosophy for

fighter combat training today. Colonel Boyd was soon recognized as a strategic visionary

and went to the Pentagon where he continued with a reputation as a shrewd and

confrontational maverick, resurrecting the F-X project which became the F-15. He

followed this effort with the light-weight fighter program that led to the F-16 and F-18

fighter jets. Colonel Boyd was discouraged by the Pentagon’s emphasis on machines

over people and ideas, with our best warriors and commanders leaving in unprecedented

numbers. “People, ideas, hardware – in that order”, Boyd would often shout. [1] Colonel

Boyd’s advice was relied upon and credited for helping form the winning strategies used

in Operation Desert Storm.

Perhaps most famously, Colonel Boyd is known for the OODA loop (see

Figure 20), used by military and business organizations alike, to provide a framework for

analyzing the various parts of the organization’s performance. It is important to note the

OODA loop is much more faceted than a single simple loop — there are multiple

feedback loops within the larger OODA loop, feed-forward loops, and decision points.

Operating the OODA loop faster than the enemy’s OODA loop yields and advantage, but

‘faster’ never meant skipping any of the steps:

• When you’re doing OODA “loops” right, accuracy and speed improve together;

they don’t trade off.

• A primary function of management is to build an organization that gets better and

better at these things.

 67

Figure 20 - The One and Only OODA Loop [35]

I think the best source for further information is the Defense and the National

Interest online web site, http://www.d-n-i.net/dni/john-r-boyd/ [35]. This site contains

many of Boyd’s unfinished works, including “A Discourse on Winning and Losing”,

which contains “Patterns of Conflict”, “Strategic Game of ? and ?”, and “Organic Design

for Command and Control”.

There are also several books which discuss Colonel Boyd, such as “Boyd: The

Fighter Pilot Who Changed the Art of War”, by Robert Coram, and another one of my

favorites “The Pentagon Wars: Reformers Challenge the Old Guard”, by James G.

Burton. Both are essential reading for acquisition mavericks out there in the world [36].

 68

Law of Competing Motives

Throughout my experiences managing programs through the acquisitions process

I observed that, although acquisitions efforts were supposed to be primarily requirements

driven, they tended to ebb and flow between competing motivations. Depending on the

focus of any particular meeting or working group, the meeting’s priorities and

conclusions tended to favor one motive at the exclusion of others. I tried to postulate and

extract what exactly should always be our primary motivation — the main thing we

should try to make most efficient and most effective.

Given my operational flying background, I initially advocated that the mission

should be the dominant motive, since it seemed that we derive the other motives from the

mission or task to be accomplished. After all, we shouldn’t be creating missions to

justify the need for more people — it is the other way around, thus we have people only

because we need them to perform tasks and missions.

Realizing my own operational bias, I considered other perspectives and concluded

that none of the motivations should be dominant. Furthermore, I observed that the more

out of balance a particular acquisition program’s competing motives were, the more

unstable, costly, unpredictable, and uncontrollable the program became — regardless of

what the deviant motive was.

Thus, I developed the Law of Competing Motives (see Figure 21) as follows:

1) Proper leadership is the influence which brings the competing motives into

balance — that is, toward the center of the color wheel. The correct

leadership for a given situation isn’t always the center of the color circle, but

it isn’t at the edge either. The correct leadership depends on assessing which

motive or motives are relatively over-dominant or under-dominant and

 69

counter-adjusting resources and priorities accordingly, (i.e. one ‘unit’ of

leftward deviation needs one ‘unit’ of rightward leadership correction).

2) Stability of leadership is essential for maintaining consistent performance. If

the commander or director changes their emphasis too often, the performance

will circle about the center of the color wheel in a sort of hysteresis loop eddy

current. This hysteresis loss represents inefficiency in the use of resources;

the bigger the area encircled, the bigger the efficiency loss.

3) Allowing one or more motives to remain over-dominant drives relative

inefficiency in all other areas. The difficulty, of course, is properly assessing

and comparing qualitative factors with quantitative measures. Thus

inefficiency in one area may be an indicator of incorrect measurement or

assessment rather than incorrect leadership or correction.

Figure 21 - Law of Competing Motives, Example Color Wheel

Note: The number of competing motives can range anywhere from two to infinity. The competing
motives may be modeled in a circular or spherical fashion. Determining which particular motives are
most opposite other motives is keystone to properly modeling the process.

 70

Bibliography

[1] R. Coram, "Boyd: The Fighter Pilot Who Changed the Art of War.". New York,
New York: Back Bay Books/Little, Brown and Company, 2002.

[2] D. F. Frank. (2002, Jun.) Defense Acquisition University. [Online].
http://www.dau.mil/conferences/presentations/2002/briefings/S1T4TheoreticalCons
id_Frank.pdf

[3] C. H. Hanks, E. I. Axelband, S. Lindsay, M. R. Malik, and B. D. Steele,
"Reexamining Military Acquisition Reform: Are We There Yet?," RAND
Corporation MG-291, 2005.

[4] Chairman of the Joint Chiefs of Staff/J-8, Capabilities and Acquisition Division.
(2005, Nov.) JCIDS Overview. [Online].
http://www.dau.mil/performance_support/docs/Nov_2005_JCIDS_Overview.ppt

[5] Defense Acquisition University. (2008) Defense Acquisition Guidebook. [Online].
https://akss.dau.mil/DAG/

[6] Joint Rapid Action Cell. (2005, Jul.) Defense Acquisition University. [Online].
https://acc.dau.mil/GetAttachment.aspx?id=22117&pname=file&lang=en-
US&aid=2111

[7] Chairman of the Joint Chiefs of Staff, "RAPID VALIDATION AND
RESOURCING OF JOINT URGENT OPERATIONAL NEEDS (JUONS) IN THE
YEAR OF EXECUTION," Chairman of the Joint Chiefs of Staff Instruction, 2005.

[8] J. T. Bennett, "Joint Staff officials will 'tweak' JCIDS to better address urgent
needs," Inside the Air Force, Feb. 2006.

[9] Program Manager Magazine, "Colleen A. Preston on Acquisition Reform,"
Program Manager Magazine, vol. 26, no. 1, Jan. 1997.

[10] A. Boessenkool. (2009, Mar.) DefenseNews.com. [Online].
http://www.defensenews.com/story.php?i=3975151

[11] P. ". Rustan. (2005, Sep.) Congressional Testimony: US Defense Space Acquisition
Problems and Potential Solutions. [Online].
http://www.library.dau.mil/Testimony%20Pedro%20L%20Rustan.pdf

[12] G. Grant. (2009, Apr.) www.DoDBuzz.com. [Online].
http://www.dodbuzz.com/2009/04/10/dod-identifies-key-themes-for-qdr/

[13] T. Christie. (2006, Mar.) Military.com. [Online].
http://www.military.com/forums/0,15240,90349,00.html

[14] Rizzo. (2007, Mar.) Air Force Acquisition Officer 101. [Online]. Formerly
available at https://www.safus.hq.af.mil/usamtraining/.

[15] D. Best. (2009, Jan.) Best Vantage Inc.. [Online].
http://www.bestvantageinc.com/bvilibrary.html

[16] P. McNamara. (2008, Sep.) PCWorld.com. [Online].
http://www.pcworld.com/article/151659/

[17] PM Magazine, "Acquisition Center of Excellence Will Drive New Capabilities to
the Warfighter," Program Manager, vol. 31, no. 2 (DAU 167), p. 118, Mar. 2002.

[18] S. Yegge. (2006, Sep.) Stevie's Blog Rants. [Online]. http://steve-
yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html

 71

[19] I. McFarland and I.). (Pivotal Computer Systems. (2006) Agile Practices on Real-
World Projects. [Online].
http://javamug.org/mainpages/presentations/AgileDevelopmentatGoogle-
DallasJUG.pdf

[20] P. Hodgetts. (2006, Jul.) The Agile Product Owner And Customer Field Guide.
[Online].
http://www.agilelogic.com/files/TU36_TheAgileProductOwnerAndCustomerField
Guide.pdf

[21] HashRocket.com. (2009, Jan.) HashRocket =>. [Online].
http://www.hashrocket.com/

[22] R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and S. Slaughter, "Is Internet-
Speed Software Development Different?," IEEE Software, pp. 70-77, Nov. 2003.

[23] P. Barry. (2008, Aug.) PaulBarry.com. [Online].
http://paulbarry.com/articles/2008/08/15/my-guest-appearance-on-a-hashrocket-3-
2-1-project

[24] D. S. J. Hutchison, "Reinventing IT Test and Evaluation," Military Information
Technology, vol. 3, no. 13, Apr. 2009.

[25] S. Adolph. (2006) "What Lessons Can the Agile Community Learn from A
Maverick Fighter Pilot?". [Online]. http://www.d-n-
i.net/fcs/pdf/adolph_2006_agile%20lessons_final.pdf

[26] Deputy Under Secretary of Defense, "ACTD Helps Warfighters Get High Altitude,
Accurate Parachute Resupplies"," 2007.

[27] E. M. Roth, et al., "Designing Work-Centered Support for Dynamic Multi-Mission
Synchronization," Roth Cognitive Engineering, BBN Technologies, Northrup
Grumman IT, C5T Corporation, Air Force Research Lab, 2006.

[28] E. M. Roth, et al., "Work-Centered Design and Evaluation of a C2 Visualization
Aid. Proceedings of the Human Factors and Ergonomics Society 50th Annual
Meeting (pp. 255-259).," Human Factors and Ergonomics Society, 2006.

[29] S. Spielberg and G. Lucas. (1981) Raiders of the Lost Ark. Film.

[30] G. E. Moore, "Cramming more components onto integrated circuits," Electronics,
vol. 38, no. 8, Apr. 1965.

[31] Intel Corporation. (2009, May) Gordon Moore and Moore's Law. [Online].
http://www.intel.com/museum/archives/history_docs/moore.htm

[32] Wgsimon. (2008, Nov.) Wikipedia. [Online].
http://commons.wikimedia.org/wiki/User:Wgsimon

[33] P. E. Ross, "5 Commandments: The rules engineers live by weren’t always set in
stone," IEEE SPECTRUM, pp. 30-35, Dec. 2003.

[34] Office of the Department of Defense. (2003) DODAF and JCIDS. PowerPoint
Briefings.

[35] Defense and the National Interest. (2006, Aug.) Defense and the National Interest.
[Online]. http://www.d-n-i.net/richards/boyds_ooda_loop.ppt

[36] J. G. Burton, The Pentagon Wars: Reformers Challenge the Old Guard, First
Printing ed. Annapolis, USA: Naval Institute Press, 1993.

 72

Vita

 Major Matt Larkowski entered the United States Air Force through the Reserve

Officer Training Corps program at the Embry-Riddle Aeronautical University, Prescott,

Arizona, where earned a B. S. in Electrical Engineering, Mathematics minor, and was

commissioned in December 1994. He subsequently earned his Navigator rating and flew

the B-52H, as an Electronic Warfare Officer, then earned his Pilot rating and flew the

KC-135R/T as an Instructor and Aircraft Commander. He is Level I certified, by the

Defense Acquisition University, for Acquisitions Program Management; Test and

Evaluation Engineering; and Systems Planning, Research, Development, and Engineering

(SPRDE-SE). Matt also taught introductory and advanced computer programming as an

associate professor of computer science at the North Dakota State College of Science.

Major Larkowski has served in operational and staff positions at the squadron, group,

deployed, and major command levels. His duties have included Flight Commander;

Chief of Squadron Scheduling; Deputy Chief of Group Mobility Operations; Deployed

Assistant Director of Operations; Global Operations Director and Command & Control

Systems Coordinator, Tanker Airlift Control Center; and Requirements Development for

the KC-X Tanker and for Mission Planning Systems Branches of the HQ AMC Strategic

Plans, Requirements, and Programs Division. He has over 3000 military and civilian

flying hours — including 300+ combat hours on 50+ sorties in Iraq and Afghanistan.

In 2008 Matt was selected to attend AFIT and is currently completing the Cyber

Warfare Intermediate Developmental Education program. Upon graduation he will

attend the Defense Advanced Research Projects Agency (DARPA) Service Chiefs’ Air

Force Fellowship Program.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of

information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty

for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

18-06-2009

2. REPORT TYPE

Graduate Research Paper

3. DATES COVERED (From – To)

May 2008 – June 2009

4. TITLE AND SUBTITLE

The Cyberspace Development Dogfight: Tightening the Acquisitions Turn Circle

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Matthew P. Larkowski, Maj, USAF

5d. PROJECT NUMBER

ENS 09-153

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION

 REPORT NUMBER

 AFIT/ICW/ENG/09-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Headquarters United States Air Force, Office of the Vice Chief of Staff, Quadrennial Defense Review Section

 Attn: Maj William F. Dobbs

 1670 Air Force Pentagon

 Washington DC 20330 DSN: 425-8586 e-mail: william.dobbs@pentagon.af.mil

10. SPONSOR/MONITOR’S

ACRONYM(S)

HAF/CVAQ

11. SPONSOR/MONITOR’S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The purpose of this research was to assess the ability for DoD software development to keep up with the increasing rate of technological change, then
propose avenues for improvement. Specifically, this research attempts to answer fundamental questions based on the concerns for the 2010 Quadrennial
Defense Review. In general, how do we adapt software acquisitions strategy to cope with the increasing rate of technological change?

The following conclusions were reached: (a) software projects must be scoped and scheduled for development cycles on the order of months, not years,

and use open architecture, Agile Development methods, and scalable designs with modular code; (b) budgets must be stabilized for long-term integrity, with a
software development working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of MAJCOM- or AOC-level business centers must be
encouraged and funded to produce tailored software modules that interface with larger agile programs built to accept these modules; (d) we must take
advantage of ATCD and ATD efforts from research laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a limited amount of
ATDs, ACTDs, and JACTDs from the labs, through the appropriate System Program Office, to produce and field operational software (by default, not by
exception); and (e) periodic software development working groups and conferences should be continued, but with emphasis on standardization and sharing of
lessons learned between services, MAJCOMs, and AOCs.

15. SUBJECT TERMS

Software Development, Acquisitions Reform, JCIDS, JACTD, ACTD, ATD, JUONS, JUON, Agile Acquisitions, Evolutionary Acquisitions, Thin Client,

Rapid Prototyping, Boyd, Burton, Moore’s Law, Rock’s Law, Larkowski, Law of Competing Motives

16. SECURITY CLASSIFICATION

OF:

17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER

 OF

 PAGES

83

19a. NAME OF RESPONSIBLE PERSON

Robert F. Mills, PhD (ENG)

REPORT

U

ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

(937) 257–3636, ext 4527; e-mail: robert.mills@afit.edu

 Standard Form 298 (Rev: 8-98)
 Prescribed by ANSI Std. Z39-18

